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The spatial evolution of three-dimensional disturbances in an attachment-line bound- 
ary layer is computed by direct numerical simulation of the unsteady, incompressible 
Navier-Stokes equations. Disturbances are introduced into the boundary layer by 
harmonic sources that involve unsteady suction and blowing through the wall. Var- 
ious harmonic-source generators are implemented on or near the attachment line, 
and the disturbance evolutions are compared. Previous two-dimensional simulation 
results and nonparallel theory are compared with the present results. The three- 
dimensional simulation results for disturbances with quasi-two-dimensional features 
indicate growth rates of only a few percent larger than pure two-dimensional results; 
however, the results are close enough to enable the use of the more computationally 
efficient, two-dimensional approach. However, true three-dimensional disturbances 
are more likely in practice and are more stable than two-dimensional disturbances. 
Disturbances generated off (but near) the attachment line spread both away from 
and toward the attachment line as they evolve. The evolution pattern is comparable 
to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two- 
dimensional attachment-line instabilities, and blowing destabilizes these instabilities; 
these results qualitatively agree with the theory. Furthermore, suction stabilizes the 
disturbances that develop off the attachment line. Clearly, disturbances that are 
generated near the attachment line can supply energy to attachment-line instabilities, 
but suction can be used to stabilize these instabilities. 

1. Introduction 
Many instability mechanisms can occur that cause the breakdown of laminar 

flow to turbulence on swept wings; however, this discussion will focus on those 
disturbances that evolve near the attachment-line region (near the leading edge). 
Turbulent contamination, which results from turbulence at a fuselage/wing juncture, 
can travel out over the wing and cause laminar flow on the wing to become turbulent. 
To prevent this contamination, devices such as the Gaster bump (1965) or suction (see 
Pfenninger 1977), implemented near the wing root, can halt the turbulent attachment- 
line boundary layer from sweeping out over the entire wing. 

Although the problem of turbulent contamination can be avoided by using a 
mechanical device, a Reynolds number must exist beyond which disturbances that 
are generated by either surface imperfections or particulates on the wing, coupled 
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FIGURE 1. Sketch of attachment-line region of swept Hiemenz flow. 

with noise, will eventually cause transition. Gaster (1967) first examined the small- 
amplitude disturbance problem by using acoustic excitation along the attachment 
line of a swept cylinder model. Gaster generated sine waves with various frequen- 
cies that were detected in the flow by a hot-film gauge on the attachment line. He 
noted that the recorded oscillations had preferred frequency bands that changed with 
tunnel speed and that this behaviour was reminiscent of travelling-wave instabili- 
ties. From his measurements, he concluded that the small-amplitude disturbances 
in an attachment-line boundary layer were stable for momentum-thickness Reynolds 
numbers & below 170. Later, Cumpsty & Head (1969) experimentally studied large- 
amplitude disturbances and turbulent flow along the attachment line of a swept-wing 
model. Without artificially tripping the boundary-layer instabilities, they observed 
that laminar flow is stable to small-amplitude disturbances up to & x 245 (which 
corresponds to the top speed of the tunnel). At the same time, Pfenninger & Bacon 
(1969) used a wing swept to 45" to study the attachment-line instabilities in a wind 
tunnel capable of reaching speeds sufficient to obtain unstable disturbances. With hot 
wires, they observed regular sinusoidal oscillations with frequencies comparable to 
the most unstable two-dimensional modes of theory; these modes caused transition 
to occur at about & x 240. A continued interest in the transition initiated near the 
attachment line of swept wings led Poll (1979, 1980) to perform additional experi- 
ments with the swept circular model of Cumpsty & Head (1969). Like Pfenninger 
& Bacon (1969), Poll observed disturbances that amplified along the attachment line. 
He noted that no unstable modes were observed below & = 230. 

With nonparallel stability theory, Hall, Malik & Poll (1984) studied the linear 
stability of the attachment-line boundary-layer flow called swept Hiemenz flow, which 
is shown in figure 1. This three-dimensional base flow is a similarity solution of the 
Navier-Stokes equations; hence, its use is advantageous in stability analyses. With 
a nonparallel theory, Hall et al. (1984) determined neutral curves with and without 
steady suction and blowing and demonstrated that the attachment-line boundary 
layer can theoretically be stabilized (destabilized) with small amounts of suction 
(blowing). Theofilis (19934 performed a direct numerical simulation, based on 
Fourier-series assumptions, of the two-dimensional linear disturbances propagating 
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FIGURE 2. Neutral curve, experimental regions of instability growth, and theoretical region of 
subcritical growth in attachment-line boundary layer. 

R, 

along the attachment line of swept Hiemenz flow. The direct numerical simulation 
results agreed with the nonparallel theory of Hall et al. (1984) near the upper 
branch of the neutral curve; however, the computations predicted growing modes in 
a region of theoretical decay near the lower branch. Theofilis (1993~)  attributed the 
disagreement between computational and theoretical results near the lower branch 
of the neutral curve to the lack of direct numerical simulation grid resolution. The 
recent spatial direct numerical simulation results of J o s h  (1994) for swept Hiemenz 
flow indicate good agreement (less than 2% result differences) with the nonparallel 
theory of Hall et al. (1984) near both the upper and lower branches. 

With a weakly nonlinear theory and computations based on Fourier-series, Hall & 
Malik (1986) discovered a region of subcritical instability growth, which is shown in 
figure 2 with the experiments of Pfenninger & Bacon (1969) and Poll (1979, 1980) 
and the neutral curve of Hall et al. (1984). Consistent with the Pfenninger & Bacon 
( 1969) experiments, large-amplitude disturbances became unstable before the linear 
critical point (subcritical). Furthermore, near the lower branch of the neutral curve, 
Hall & Malik (1986) observed equilibrium states for large-amplitude disturbances. 
Both Jimenez et al. (1990) and Theofilis (1993b) did not find this region of subcritical 
growth with temporal direct numerical simulation codes. Jimtnez et al. (1990) 
contended that this subcritical growth region did not exist. Contrary to the findings 
of Jimenez et al. (1990) and Theofilis (1993b), the nonlinear spatial direct numerical 
simulation results of J o s h  (1994) showed both subcritical growth near the upper 
branch and nonlinear equilibrium states near the lower branch. These results are 
consistent with both the weakly nonlinear theory and the experimental results. It is 
clear from the results of J o s h  (1994) that the input disturbance amplitude in the work 
of Theofilis (1993b) was too small to generate a subcritically growing disturbance and 
that a different flow-acceleration pressure gradient was used by JimCnez et al. (1990), 
resulting in a decaying mode instead of a subcritically growing mode. 
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Hall & Seddougui (1990) studied oblique waves and their interaction in attachment- 
line flow at the large Reynolds number limit. They note that close to the attach- 
ment line a small band of destabilized oblique modes appear, interact with the 
two-dimensional mode, and cause a breakdown of the two-dimensional mode. In 
addition, they note that oblique modes become less important away from the at- 
tachment line and that low-frequency modes become the dominant mechanism (i.e. 
stationary crossflow modes). More recently, Criminale, Jackson & Lasseigne (1994) 
have performed an analysis of three-dimensional inviscid stagnation-point flow by 
solving an initial-value problem. They show that unstable disturbances can be found 
for a flow expansion away from the stagnation point in one transverse direction and 
toward the stagnation point in the other transverse direction. They hypothesize that 
the three-dimensionality of the flow might overcome the stabilizing effects of viscosity, 
rendering the inviscid instability trends. 

The two-dimensional theories of Hall et al. (1984) and Hall & Malik (1986) 
have demonstrated that nonparallel flow and nonlinear disturbances expand the con- 
ventional quasi-parallel neutral-curve region. These results have been confirmed by 
the two-dimensional spatial direct numerical simulations of J o s h  ( 1994). However, 
the true physical flow involves three-dimensional disturbances that are imbedded in 
a three-dimensional boundary-layer flow. The relative growth or decay of three- 
dimensional linear and nonlinear disturbances must be understood to properly inter- 
pret the experimental results (some of which are shown in figure 2). Furthermore, 
the instability of the attachment-line flow to three-dimensional disturbances must be 
understood to formulate theories and implement devices to prevent instability growth. 

The goal of the present study is to compute the evolution of three-dimensional 
instabilities in an attachment-line boundary-layer flow. A three-dimensional spatial 
direct numerical simulation approach is developed to study the instabilities. These 
simulations differ from previous computational studies because the present numerical 
formulation does not assume periodicity in the flow and does not limit the form of 
the disturbances. Specific regions in the parameter space are investigated with the 
direct numerical 'simulation to verify the nonparallel theory of Hall et al. (1984) 
for infinitesimal three-dimensional disturbances. Furthermore, the three-dimensional 
results are compared with the two-dimensional simulation results, and the effects of 
steady suction and blowing on the three-dimensional instability growth are evaluated. 
Disturbances are generated off (but near) the attachment line, and the disturbance 
evolutions are computed and compared with quasi-two-dimensional results. 

2. Problem formulation 
For the problem at hand, the velocities ii = ( i i , G ,  9) and the pressure p are solutions 

of the incompressible, unsteady Navier-Stokes equations. The instantaneous velocities 
ii and the pressure p niay be decomposed into base and disturbance components as 

i ( x ,  t )  = U ( x )  + u(x, t )  and p ( x ,  t )  = P ( x )  + p(x ,  t )  

where the base flow is given by the velocities LI = ( U ,  V ,  W )  and the pressure P ,  and 
the disturbance component is given by the velocities u = (u,  u ,  w) and the pressure 
p .  A Cartesian coordinate system x = ( x , y , z )  is used in which x is aligned with 
the attachment line, y is wall normal, and z corresponds to the direction of flow 
acceleration away from the attachment line. 

Originally described by Hall et a/. (1984), the base flow referred to as a swept 
Hiemenz flow is a similarity solution to the incompressible three-dimensional Navier- 
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Stokes equations. Shown in figure 1, the fluid comes straight down toward the wall; it 
turns away from the attachment line into the +z-directions to form a boundary layer. 
In the x-direction, the flow is uniform. In the absence of sweep, U, is equal to 0 and 
the flow reduces to the two-dimensional stagnation flow first described by Hiemenz 
(1911). A boundary-layer thickness is defined in the (y,z)-plane as 6 = ( v L / W , ) ' / ~ ;  
a Reynolds number, as R = U,6/v = 2.475&; and a transpiration constant, as 
IC = V , ( L / V W , ) ' / ~ ,  where K = 0 for the zero-suction case, U,, V,, W, are velocity 
scales, and L is the length scale in the flow-acceleration direction z. If the attachment 
line is assumed to be infinitely long, the velocities become functions of z and y only, 
and the similarity solution can be found. 

The equations for the base flow were given by Hall et al. (1984). If the solutions of 
these equations are nondimensionalized with respect to the attachment-line velocity 
U,, the boundary-layer thickness 6, and the kinematic viscosity v ,  then the base flow 
is 

(2.2) U ( Y )  = f i ( Y ) ,  V ( Y )  = - V ( Y ) ,  and W ( Y , Z )  = -crfr(Y) 

where {X, Y , Z }  = { x , y ,  z}/6 and the hats refer to similarity variables. Note that in 
the character of this similarity solution, U and V are uniform along the attachment 
line and W grows linearly with distance from the attachment line. 

As Arnal (1994) demonstrated, the velocity profiles represented by equation (2.2) 
on the attachment line have properties which are very similar to Blasius flat-plate 
flow (except Blasius flow is slightly less stable than attachment-line flow). Therefore, 
we should expect viscous travelling-wave instabilities which are comparable to what 
we find in flat-plate flow. Namely, the instability can be viewed as an instability of 
the vorticity distribution, where the slight displacement of the voriticity can alter the 
process of production, convection, and diffusion of vorticity, which may tend to alter 
more and more the process and lead eventually to turbulence. However, the process 
is not clear off of the attachment line. Unlike two-dimensional flow problems, the 
divergence of the velocity components in the potential flow can influence the velocity 
profile shape and corresponding stability properties of the flow. 

For the disturbance portion of equation (2. I), the three-dimensional incompressible 
Navier-Stokes equations are solved in disturbance form as 

1 A  z 
R R 

au 1 
at R 
- + ( u ' v ) u + ( u ' v ) u + ( u ' v ) u  = - v p +  -v2u (2.3) 

with the continuity equation and boundary conditions 

u = O  at Y = O  and u + O  as Y +a. (2.4) 

Disturbances are forced by harmonic-source generators, which involve suction and 
blowing at the wall and are assumed to decay to zero in the far field. At the inflow, 
solutions of the base flow are imposed, and the buffer-domain technique is employed 
as the outflow condition. 

3. Numerical methods of solution 
In the attachment-line (X) direction, fourth-order central finite differences are 

used for the pressure equation and sixth-order compact differences are used for the 
momentum equations in the interior of the computational domain. At the boundary 
and near-boundary nodes, fourth-order forward and backward differences are used. 
The discretization yields a pentadiagonal system for the finite-difference scheme and 
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a tridiagonal system for the compact-difference scheme. The approximations can be 
solved efficiently by appropriate backward and forward substitutions. 

In both the wall-normal ( Y  ) and flow-acceleration ( Z )  directions, Chebyshev series 
are used to approximate the disturbances at Gauss-Lobatto collocation points. A 
Chebyshev series is used in the wall-normal direction because it provides good 
resolution in the high-gradient regions near the boundaries. Furthermore, the use of 
as few grid points as possible results in significant computational cost savings. In 
particular, the use of the Chebyshev series allows an efficient pressure solver. Because 
this series and its associated spectral operators are defined on [-1, 11 and the physical 
problem of interest has a truncated domain [0, ymX] and [-zmX, z,,], transformations 
are employed. Furthermore, stretching functions are used to cluster the grid near both 
the wall and the attachment line. For further details on the properties and the use of 
spectral methods, refer to Canuto et al. (1988). 

For time marching, a time-splitting procedure was used with implicit Crank- 
Nicolson differencing for normal diffusion terms ; an explicit three-stage Runge-Kutta 
method by Williamson (1980) was used for the remaining terms. For details of the 
time-marching procedure, refer to Joslin, Streett & Chang (1992). The solution 
is determined on a staggered grid. The intermediate Runga-Kutta velocities are 
determined on Gauss-Lobatto points. The pressure is found by solving the Poisson 
equation on Gauss points and is then spectrally interpolated onto Gauss-Lobatto 
points. Then, the full Runga-Kutta stage velocities are obtained from Gauss-Lobatto 
points with the updated pressure. The above system is solved three consecutive times 
to obtain full time-step velocities. 

To satisfy global mass conservation, an influence-matrix method is employed and 
is described in some detail by Streett & Hussaini (1991), Danabasoglu, Biringen, & 
Streett (1990, 1991), and J o s h  et al. (1992, 1993). For boundary-layer flow, four 
Poisson-Dirichlet problems are solved for the discrete mode that corresponds to the 
zero eigenvalue of the system; single Poisson-Neumann problems are solved for all 
other modes. 

To efficiently solve the resulting Poisson problem, the tensor-product method of 
Lynch et al. (1964) is used. The discretized form of the Poisson equation for the 
pressure is 

(3.1) 
where p is the desired pressure solution; the right side of the equation R results 
from the time-splitting procedure; I is the identity matrix; L, is the attachment-line- 
directed central finite-difference operator; L, and L, are the wall-normal-directed and 
flow-acceleration-directed spectral operators; and 8 denotes a tensor product. By de- 
composing the operators L, and L, into their respective eigenvalues and eigenvectors, 
we find 

where Q and S are the eigenvectors of L, and L,, 0-' and S-' are inverse matrices 
of Q and S, and A y  and A ,  are the eigenvalues of L, and L,. The solution procedure 
reduces to the following sequence of operations to determine the pressure p :  

(L. 8 I 8  I + I 8  L, 8 I + I 8  I 8  LZ)  p = R 

L, = QAyQ-I and L, = SA,S-' (3.2) 

(3.3) 1 p' = ( I  8 Q-' 8 S-')R, 

= ( I  8 Q 8 S ) p t .  
p t  = ( L x 8 1 8 / + I ~ ~ , 8 1 + 1 8 1 8 ~ ~ ) - ' p o ,  

p 

Because the number of grid points in the attachment-line direction is typically an 
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order of magnitude larger than the wall-normal and flow-acceleration directions, the 
operator L, is much larger than both L, and L,. Because L, is large and has a 
sparse pentadiagonal structure and because A ,  and A, influence the diagonal only, 
an LU decomposition is performed for the second stage of equation (3.3) once, and 
forward and backward solutions are performed for each time step of the simulation. 
The first and third steps of the pressure solution for equation (3.3) involve matrix 
multiplications. 

To obtain the attachment-line-directed operator L,, central finite differences are 
used. To find the wall-normal L, and flow-acceleration L, operators, the following 
matrix operations are required : 

L, = eLDyDy@ and L, = I ~ L D z d z ~ L  (3.4) 

where D, is a spectral wall-normal derivative operator for the stretched grid; D, is 
the spectral, derivative operator that is grid clustered in the attachment-line region; 
and D, and b, are the derivative operators with the first and last rows set to 0. 
The interpolation matrix / g L  operates on variables at Gauss-Lobatto points and 
transforms them to Gauss points; the interpolation matrix cL performs the inverse 
operation. The spectral operators are described in detail by Canuto et al. (1988) and 
Joslin et al. (1993). 

The operators {L,, L,, Lz},  the eigenvalue matrices { A y ,  A,}, the eigenvector matrices 
(9, Q-', S, S-'}, and the influence matrix are all mesh-dependent matrices and must 
be calculated only once. 

The buffer-domain technique introduced by Streett & Macaraeg (1989) is used for 
the outflow condition. As shown by J o s h  et al. (1992) for the flat-plate boundary- 
layer problem, a buffer length of three disturbance wavelengths is adequate for 
travelling waves. The disturbances are assumed to be from the discrete spectrum, 
which exponentially decay with distance from the wall. Both at the wall and in the 
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FIGURE 4. Side and top view of three-dimensional travelling wave 
in attachment-line boundary layer. 

far field, homogeneous Dirichlet conditions are imposed. Homogeneous Dirichlet and 
Neumann conditions have been used in the flow-accelerated direction. With either 
condition, the disturbance will develop in the same manner along the attachment line, 
provided that the boundaries are sufficiently far from the attachment-line region. The 
base flow is used for the inflow boundary condition. 

Disturbances are forcibly imposed into the boundary layer by unsteady suction 
and blowing with the wall-normal velocity component through the wall (harmonic- 
source generators). An equal amount of mass injected by blowing is extracted by 
suction so that zero net mass is added to the boundary layer. A similar technique 
has been used by (among others) Danabasoglu, Biringen, & Streett (1991) in there 
study of periodic control by suction and blowing. Although the disturbances may 
be generated by random frequency input, the disturbances of interest here are forced 
with known frequencies. Essentially, this disturbance generator is an alteration to the 
no-slip boundary conditions which are conventionally used for the wall condition in 
a viscous flow problem. 

4. Results 
The spatial evolution of three-dimensional disturbances is computed by direct 

numerical simulation, which involves the solution to the unsteady, nonlinear, three- 
dimensional Navier-Stokes equations. The simulations are performed on a grid of 
661 points (= 60 points per wavelength) along the attachment line, 81 points in 
the wall-normal direction, and 25 points in the flow-acceleration direction. The far- 
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field boundary is located at 506 from the wall, the computational length along the 
attachment line is 216.566, and the flow-acceleration boundaries are located +lo06 
from the attachment line. For the time-marching scheme, the disturbance wavelength 
was divided into 320 time steps per period. The total Cray Y-MP time for a simulation 
with a single processor was approximately 25 hr. As shown in figure 3, the parameter 
regions of interest consist of a region of linear instability growth, a region of linear 
instability decay (which is the the region of nonlinear, subcritical instability growth 
identified by Hall & Malik 1986), the upper and lower branches of the neutral curve, 
and the critical region predicted by the nonparallel theory of Hall et al. 1984. 

This study begins by validating the simulation results for infinitesimal disturbances 
with hydrodynamic stability theory with the special case of a frozen base flow. 
Nonparallel terms (i.e. the wall-normal base flow components) for the equations 
are included in the simulation and the instabilities are compared with the frozen- 
flow instability properties. Next, aspects of instability development on and near the 
attachment line are compared for quasi-two-dimensional and point-source harmonic- 
source generators with the theory of Hall et al. (1984). The effects of suction on the 
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instabilities are documented. Conclusions are drawn and the importance of this study 
to the global problem of attachment-line instability is ascertained. Finally, future 
directions for continuing the study of the problem of instabilities in attachment-line 
boundary layers are suggested. 

4.1. Region of disturbance decay 

The nonparallel theory of Hall et al. (1984) outlined the stable and unstable regions 
for infinitesimal disturbances. In a segment of the subcritical region, large-amplitude 
disturbances were found by Hall & Malik (1986) to exhibit nonlinear amplification. 
The two-dimensional spatial direct numerical simulation study by J o s h  ( 1994) con- 
firmed this subcritical growth phenomenon. In this section, the Reynolds number 
R = 570 and the frequency w = 0.1249, which are parameters in the subcritical 
region, are used in the study of the evolution of small-amplitude three-dimensional 
disturbances. The results are compared with linear stability theory and previous 
two-dimensional results. 

To compare with the two-dimensional theory and previous simulations, a quasi- 
two-dimensional disturbance is initiated in the three-dimensional flow. At best, 
this disturbance is an approximation to a true two-dimensional instability mode. 
To generate this two-dimensional disturbance, a harmonic source is used that is 
elongated (-44.2 < 2 < 44.2) in the flow-acceleration direction. This disturbance- 
forcing method is comparable to using a vibrating ribbon to generate two-dimensional 
disturbances for wind-tunnel experiments. The qualitative features of a disturbance 
generated by the harmonic source with a small amplitude (e.g. A = 0.001%) are shown 
in figure 4. The disturbance evolution is viewed from above and along the attachment 
line. The wave travels along the attachment line without significant three-dimensional 
features. However, because the base flow is accelerating away from the attachment 
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FIGURE 7. Comparison of three-dimensional disturbance velocity profiles at X = 100 near 
attachment line at R = 570 and w = 0.1249. 

line (in the fZ-directions), wave spreading occurs with distance from the harmonic 
source, and the rate of spreading increases with distance along the attachment line. 

Quasi-two-dimensional simulation results for both a quasi-parallel base flow (i.e. 
I/ = 0) and the full swept Hiemenz flow are compared with linear stability theory. 
The results are shown in figure 5. The amplitude, decay rate, and wavelength of 
disturbances simulated with the quasi-parallel flow are in very good quantitative 
agreement with the two-dimensional linear stability theory results. This agreement 
suggests that in this parameter region the elongated harmonic source can approximate 
a two-dimensional disturbance along the attachment line. Figure 5 also shows that 
the full swept Hiemenz base flow destabilizes disturbances due to the inclusion of 
the V velocity component. This destabilizing feature is consistent with the results 
reported in the two-dimensional nonparallel studies by Hall et al. (1984) and J o s h  
(1994). 

To further demonstrate the two-dimensional nature of the disturbance generated 
with the elongated harmonic source, figure 6 shows the attachment-line results com- 
pared with results at a distances 136 and 356 off the attachment line. The evolution 
patterns are identical out to near 356, where small deviations are observed. This 
implies that the elongated harmonic source is generating primarily two-dimensional 
waves and that the attachment-line velocity component is dominant (i.e. the am- 
plitude of the w velocity component of the disturbance is too small to modify the 
dominant u component). Figure 7 shows u and w velocity profiles at Z = 136 and 
356. Although only small differences are found with u velocity components, the w 
velocity components are in strong disagreement. Note that the w velocity is an order 
of magnitude smaller than the u velocity, which is the reason for the good agree- 
ment between the u velocity on the attachment line with the same components off 
the attachment line. Furthermore, although no symmetry assumption is made, flow 
symmetry about the attachment line is realized with this particular harmonic-source 
generator. 

In figures 8 and 9, three-dimensional simulation results on the attachment line are 
compared with previous two-dimensional simulation results by J o s h  (1994). Figure 8 
clearly shows a significant amplitude disparity between the two- and three-dimensional 
results. Because the three-dimensional simulations contain a flow-acceleration veloc- 
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ity component (w), an additional degree of freedom is available to disperse (or 
absorb) energy. Hence., the harmonic-source generator forces less energy into the 
attachment-line velocity component (u). The two-dimensional and three-dimensional 
(normalized by the two-dimensional maximum of the u velocity) results are also 
shown in figure 8 to enable a growth-rate comparison. The disturbance is slightly 
more destabilized in the full three-dimensional flow than in the two-dimensional flow 
approximation. Similar qualitative differences are evident when disturbance growth 
rates in quasi-parallel flow are compared with those in nonparallel flows. Finally, 
normalized disturbance velocity profiles are compared in figure 9. The shapes of 
the compared profiles agree well. The results demonstrate that two-dimensional 
simulations capture the qualitative features of the true three-dimensional flow; in ad- 
dition, because a third degree of freedom (w,z) is not present in the two-dimensional 
simulations, amplitude information is overpredicted, and growth-rate information 
is underpredicted. These results suggest that much larger disturbances will be re- 
quired to generate subcritical disturbance growth in the three-dimensional flow (if 
subcritical growth is possible for a single discrete mode in a three-dimensional 
flow). 

In the nonparallel theory of Hall et al. (1984), the z-dependent form for the 
flow-accelerated velocity component ( w )  was a key assumption, which led to a system 
of ordinary differential equations, rather than partial differential equations. This 
assumed form is equivalent to the base-flow form: W + W,Z.  Figure 10 shows 
the maximum amplitudes of the flow-accelerated velocity component at X = 100, 
away from the attachment line. For the present harmonic source, this z-dependent 
disturbance form assumed by Hall et al. (1984) is realized in the simulation near 
the attachment line; however, because the harmonic source has a finite length, the 
disturbance behaviour near the harmonic-source ends deviates from the expected z 
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FIGURE 1 1.  Evolution of flow-accelerated disturbance velocity (w) in attachment-line boundary 
layer at R = 570 and w = 0.1249. (Disturbance generated between X = 16 and 19.) 

dependence. The harmonic-source ends cause a perturbation to the flow that is shown 
both in figure 10 and in a top view of the flow in figure 11.  Similar difficulties in 
disturbance initialization can be found in the experiments; however, the core of the 
test region (i.e. the attachment line) is not significantly contaminated by these end 
effects. 

4.2. The neutral-curve region 
In parameter regimes near the neutral curve, finite Reynolds number disturbance 
modes are studied near the upper branch, the lower branch, and the critical point. 
Specifically, the simulations are conducted (in the regions shown in figure 3) to verify 
the nonparallel theory of Hall et al. (1984). 

For the upper branch, three simulations are performed to identify the neutral 
curve. The harmonic-source disturbance generator is used to generate the quasi-two- 
dimensional modes on the attachment line. For the Reynolds number R = 684.2, the 
three-dimensional simulation results are shown in figure 12 for various frequencies. 
The upper branch of the neutral curve is shown at the frequency o = 0.1263; the 
nonparallel theory of Hall et al. (1984) and the two-dimensional simulations of Joslin 
(1994) report that the upper branch is between o = 0.1230 and o = 0.1240. Although 
the two- and three-dimensional results yield different upper branch locations, the 
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FIGURE 12. Instability growth and decay near branch I1 of curve of neutral stability for 

attachment-line boundary layer at R = 684.2. 
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FIGURE 13. Instability growth and decay near critical point of curve of neutral stability for 
attachment-line boundary layer at w = 0.1 104. 

relative error, or difference, in the locations is only about 2%. This difference may be 
attributed to the assumption that a two-dimensional disturbance is generated from a 
three-dimensional harmonic source or that the three-dimensional base flow does not 
support pure two-dimensional disturbances. 



384 R. D. J o s h  

(X 10.~)  

I .o 

t 
0.9 

U 

0.8 

-+- 0=0.080 
0.082 

-e- 0.084 

...)(--. 

1 : y1 . __. ....... -*- ..._. *._......$I ..__..__. x- --. 

-+---c---y-- -I.--- +--- 

- I 
- I  

1 

X 
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attachment-line boundary layer at R = 684.2. 

Near the critical-point region of the neutral curve, computations are made to verify 
the critical point predicted by the nonparallel theory. Digitized data from the results 
of Hall et al. (1984) indicate that the Reynolds number R = 580 and frequency 
o = 0.1 104 is the point furthest upstream at which an infinitesimal, two-dimensional 
disturbance becomes unstable. Although this value is not the exact critical point, 
this Reynolds number/frequency combination lies on the neutral curve in the region 
of the critical point. The computational results for disturbances in this critical-point 
region are shown in figure 13. The three-dimensional results suggest that for the 
frequency of o = 0.1 104, the Reynolds number for neutral stability is slightly greater 
than R = 585. This leads to less than 1% difference between the nonparallel theory 
and the simulation results. 

Finally, figure 14 shows results from simulations performed in the vicinity of the 
lower branch of the neutral curve. The results indicate that for the Reynolds number 
R = 684.2 the lower branch of the neutral curve is approximately at the frequency 
o = 0.082, which agrees with nonparallel theory. 

For practical engineering purposes, the nonparallel theory of Hall et al. (1984) 
agrees with the three-dimensional simulation results in the limit of infinitesimal 
quasi-two-dimensional disturbances that propagate along the attachment line. 

4.3. Three-dimensional disturbances 
To generate three-dimensional disturbances, the flow-acceleration length of the 
harmonic-source generator is reduced to enable a more direct transfer of energy 
to the w velocity component. Disturbances computed in the parameter regime de- 
scribed by a Reynolds number R = 570 and frequency o = 0.1249 are shown in figure 
15. By reducing the length of the original harmonic source from -44.2 < Z < 44.2 
to -20.4 < 2 < 20.4, the generated disturbance is very similar to the previous quasi- 
two-dimensional disturbance. However, by reducing the harmonic-source length to 
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RGURE 15. Evolution of disturbances in attachment-line boundary layer at R = 570 and 
o = 0.1249, where disturbances are generated with harmonic sources of various lengths. 

-13.4 < Z < 13.4 (one-third of the original length), the generated disturbance is 
significantly stabilized on the attachment line. The evolution no longer represents 
a quasi-two-dimensional disturbance and becomes more comparable to a harmonic 
point source. Two-dimensional instabilities are apparently dominant on the attach- 
ment line. 

Next, a harmonic-source generator is used to introduce a disturbance off the 
attachment line to determine the direction and rate of instability growth or decay. The 
results of a disturbance generated with a harmonic source located at -27.8 < Z < 0 
are shown in figure 16. The top view indicates that the harmonic source generates a 
circular patterned disturbance that evolves along the attachment line with spreading 
both away from and toward the attachment line. These results suggest that the flow- 
accelerated shear away from the attachment line has insufficient strength to deter the 
spreading of the disturbance toward the attachment line. Figure 16 also shows that 
the maximum-amplitude u velocity on the attachment line initially undergoes a slight 
decay and then continues to grow. The amplitude information along the attachment 
line suggests that an unstable mode is observed in the simulations; however, the top 
view of the flow field indicates that this amplification is caused by the wave spreading 
phenomenon. The combined amplitude and visual results imply that a disturbance 
generated off (but near) the attachment line can supply energy to the attachment 
region by the spreading of the wave pattern. In turn, this energy supply may feed an 
unstable mode on the attachment line. 

For the final simulation in this section, the Reynolds number R = 684.2 and 
the frequency o = 0.1150 are used because the nonparallel theory predicts that 
infinitesimal two-dimensional disturbances are unstable on the attachment line. The 
disturbance is generated with a harmonic source which is positioned at -35.6 < 
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FIGURE 16. Evolution of disturbance velocity (u )  on attachment line, and top view of 
three-dimensional travelling wave in attachment-line boundary layer at R = 570 and o = 0.1249. 

Z < -6.6 (i.e. completely off the attachment line). The top view of the computed 
disturbance is shown in figure 17. The harmonic source has generated a disturbance 
with a circular pattern. As before, the disturbance evolves primarily along the 
attachment line, and the wave spreads both away from and toward the attachment 
line. Streamlines and vortex lines (determined by computing the trace of velocity 
and vorticity vectors) are overlaid on the disturbance pattern. These lines yield 
valuable information on the mean-flow-field properties near the attachment line. 
The disturbance packet follows the streamlines, and the packet spreads and evolves 
near the attachment line in a manner similar to packets in flat-plate boundary-layer 
flows. These results and the quasi-two-dimensional results suggest that the behaviour 
of instabilities in the region on and near the attachment line can be expected to 
be qualitatively similar to flat-plate boundary-layer instabilities. Supporting this 
postulation, the trace of velocity vectors in the wall-normal/flow-acceleration plane 
are shown at the top of figure 17. The resulting pattern in a reference frame moving 
with the disturbance velocity is reminiscent of Kelvin cat's eyes, which are observed 
in the two-dimensional flat-plate boundary-layer flow. 

The amplitudes of the disturbance at various 2 locations are shown in figure 
18. The disturbance has a peak amplitude initiated at Z = -20.4 and undergoes a 
strong decay along the attachment line, although the mode is predicted to be unstable 
on the attachment line. The spread of the disturbance toward the attachment line 
indicates that the disturbance on the attachment line is either unstable or merely 
gaining energy at a rate comparable to the spreading rate. However, because the 
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FIGURE 17. Top view of disturbance evolution in attachment-line boundary layer at R = 684.2 and 
w = 0.1150, where disturbance is generated with harmonic source near attachment line. The top 
part shows the trace of velocity vectors. 

theory for two-dimensional disturbances indicates that the disturbance is unstable 
on the attachment line, some combination of energy transfer due to spreading and 
linear growth is likely. However, the more stable three-dimensional modes may rob 
the two-dimensional mode of enough energy to prevent flow transition along the 
attachment line. Note that the I( velocity components at all Z locations indicate 
increased amplitudes along the attachment line, except for the Z = -20.4 location 
which indicates decay. Spreading causes the other Z locations to receive energy, but 
because the Z = -20.4 location was the location of maximum initial amplitude and 
because the disturbance propagates along and away from the attachment line, the 
location of the maximum velocity is no longer at 2 = -20.4. This results in an 
observed decay at the Z = -20.4 station. Figure 19 shows velocity profiles at various 
Z locations at X = 100. As energy is transferred because of this spreading, the 
profiles near the attachment line undergo a distortion near the wall. This distortion 
leads to multiple maxima and profile shapes that deviate from the linear theory. 

4.4. Suction and blowing effects 
By changing the boundary conditions in the base equations from K = 0, steady suction 
( K  < 0) or blowing (K > 0) can be used to alter the growth or decay of disturbances 
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FIGURE 18. Evolution of disturbance generated off attachment line in attachment-line boundary 
layer at R = 684.2 and o = 0.1150. 
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FIGURE 19. Comparison of three-dimensional disturbance velocity profiles at X = 100 near 
attachment line at R = 684.2 and w = 0.1150. 

in the attachment-line boundary-layer flow. Near the upper branch of the neutral 
curve, the Reynolds number R = 684.2 and frequency o = 0.1230 are used for the 
simple test case of linear stability with suction and blowing. Shown in figure 20, 
the results of the quasi-two-dimensional disturbance generated with the elongated 
harmonic source (-44.2 < 2 < 44.2) indicate that suction stabilizes the disturbance 
and blowing destabilizes the disturbance, which agrees with the theoretical results by 
Hall et al. (1984) and the two-dimensional simulation results by J o s h  (1994). 

The results for the three-dimensional disturbance generated with a harmonic source 
of length -35.6 < 2 < -6.6 at the Reynolds number R = 684.2 and frequency 
o = 0.1150 indicated growth in the energy on the attachment line (figures 17-19). 
Because two-dimensional disturbances, which correspond to this Reynolds number 
and frequency, are linearly unstable on the attachment line, the presence of energy 
should lead to instability growth. Computations with suction are used to stabilize the 
disturbance on and near the attachment line. Clearly, figure 21 shows that suction 
stabilizes the disturbances located both on and off the attachment line. 
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FIGURE 21. Effect of suction on evolution of disturbance generated off of attachment line in 
attachment-line boundary layer at R = 684.2 and o = 0.1150. 

4.5. Region of subcritical disturbance growth 
The weakly nonlinear theory and Fourier-based simulations by Hall & Malik (1986) 
reveal that a region of nonlinear subcritical growth exists for large-amplitude dis- 
turbances that evolve on the attachment line of a three-dimensional boundary-layer 
flow. The independent two-dimensional spatial direct numerical simulation study by 
J o s h  (1994) confirmed this region of subcritical growth. Because the present results 
shown in figure 8 indicate that much larger harmonic-source amplitudes are required 
to initiate large-amplitude disturbances and because of the large computational costs 
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involved to resolve this nonlinear phenomenon, three-dimensional simulations of 
large-amplitude (potentially subcritical) instabilities will not be attempted in this 
paper. 

5. Concluding remarks 
In this paper, the results of three-dimensional spatial direct numerical simulations of 

attachment-line instabilities in swept Hiemenz flow are presented. A computational 
approach was described, which permits simulations of disturbances that evolve in 
flows where the periodic assumption is invalid. 

Small-amplitude quasi-two-dimensional disturbances, computed in a quasi-parallel 
base flow, were shown to grow and decay in agreement with two-dimensional linear 
stability theory. For complete swept Hiemenz flow, disturbances are destabilized 
in comparison with those from both linear stability theory and two-dimensional 
simulation results. 

The neutral-curve location predicted by the nonparallel theory of Hall et al. (1984) 
agreed well with the three-dimensional simulation results in the limit of infinitesi- 
mal quasi-two-dimensional disturbances, which propagate along the attachment line. 
Furthermore, the effects of both steady suction and blowing on small-amplitude 
disturbances were documented with direct numerical simulation. In agreement with 
the results of Hall et al. (1984), suction stabilizes small-amplitude disturbances, and 
blowing destabilizes these disturbances. 

For the parameter regions studied here, instabilities that are generated from har- 
monic sources located off the attachment line spread both toward and away from 
the attachment line. Because of this spreading, energy from the initial disturbance is 
transferred to the attachment-line instabilities; however, suction stabilizes these insta- 
bilities. Disturbance packets generated near the attachment line follow the streamlines, 
and the packets spread and evolve near the attachment line in a manner similar to 
packets in flat-plate boundary-layer flows. Hence, instabilities in the region on and 
near the attachment line can be expected to be qualitatively similar to flat-plate 
boundary-layer instabilities. 

Although the present study has demonstrated that instabilities generated off the 
attachment-line can spread and feed energy to attachment-line modes, the results 
do not indicate which modes receive this energy or whether these modes are unsta- 
ble. A parameter study would provide this important information. Because of the 
significant computer resources required for the nonlinear three-dimensional Navier- 
Stokes computations, a parameter study could not be performed for the range of 
three-dimensional viscous instabilities. Such a study was recently conducted by Lin 
& Malik (1994). F-om the three-dimensional linear computations by Lin & Ma- 
lik (1994), unstable instabilities in addition to the dominant two-dimensional wave 
were discovered by permitting nonuniformities in the flow-acceleration direction (2). 
They showed that both asymmetric and symmetric modes, which have phase dif- 
ferences with distance from the attachment line, can be unstable depending on the 
Reynolds number. Although these new modes are linearly stable in the subcriti- 
cal region outlined by Hall & Malik (1986), perhaps some combination of small 
(but finite)-amplitude modes may initiate a decline in the critical Reynolds num- 
ber in a manner similar to the trend suggested by the nonlinear subcritical growth 
predicted by Hall & Malik (1986). Because Hall & Malik considered only the 
two-dimensional, uniform symmetric mode, very large amplitudes (12% of mean) 
were required to initiate this subcritical growth. With the discovery of these new 



Direct simulation of evolution and control of three-dimensional instabilities 391 

modes, the required amplitudes for subcritical growth may feasibly be generated 
by very small discontinuities (e.g. the accumulation of debris on the wing) across 
the attachment line. Further investigation of these nonuniform asymmetric modes 
should be pursued. A subsequent study by Lin and J o s h  is currently underway 
to explore the nonlinear interaction of these nonuniform asymmetric and symmetric 
modes. 

Swept Hiemenz flow serves as a very good model for studying transition mechanisms 
related to swept-winged transition because both travelling-wave instabilities along 
the attachment line may be studied and stationary and travelling crossflow-vortex 
instabilites can be studied in the flow-acceleration direction (over the wing chord). 
Such a study could potentially link a receptivity mechanism which causes waves along 
the attachment line with streamwise vorticity in the flow-acceleration direction. 

The author wishes to express his gratitude to Dr Craig L. Streett for reviewing 
this manuscript and for providing useful comments to enhance the final draft. Also, 
thanks go to Ms Jonay A. Campbell for her editorial assistance. 
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